Daily Archives: April 27, 2019

Tenth Anniversary of the April Blogging from A to Z Challenge – Letter X is for X-ray and Bipolar Disorder

Tenth Anniversary of the April Blogging from A to Z Challenge

I have chosen to write for the mental health topic. It is very important to me that we support all those with mental health issues and I personally suffer from a good amount of them myself.

Letter X is for X-ray and Bipolar Disorder


Brain imaging technology has yielded significant insights into bipolar diseases. Brain imaging techniques allow visualization of the whole living brain or slices of the living brain without ever having to perform surgery. Because these procedures are non-invasive and give lots of information about brain structure and function, they have revolutionized research and medicine. Various studies have documented differences in brain structures and functions that are typically present when bipolar and non-bipolar (e.g., healthy) brains are compared.

Structural studies measure brain composition using technologies such as Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging (MRI). In CAT, X-rays are used to scan the brain. With each scan, a digital photograph is taken and a computer compiles these photographs into a three-dimensional image of the brain. In MRI, the brain is scanned by a magnet which is linked to a computer. Each MRI scan produces hundreds of digital images from multiple angles to produce an accurate three-dimensional image. Using these methods, researchers have found enlarged ventricle spaces (spaces which carry cerebrospinal fluid through and around the brain) in those with a bipolar diagnosis. Larger ventricles indicate less brain tissue is present as a whole within the brain and suggests that either deterioration has occurred, or that bipolar brains develop differently than normal brain controls. Another structural anomaly observed is that bipolar brains tend to contain an abnormal amount of small, white areas in the brain known as ‘white matter hyperintensities’. White matter is involved in transmitting information from one part of the brain to the other. Patients who have these hyperintensities have an occurrence of bipolar disorder that is three times as likely as the general population. Furthermore, in bipolar patients, there is a reduction in glial cells, which are cells that insulate brain neurons, making them communicate more efficiently. Less glial cell density within bipolar brains means that these brains do not communicate as efficiently as their normal counterparts. If the bipolar brain has a difficult time conversing with itself because of white matter hyperintensities and/or glial cell degeneration, mood fluctuations might be a natural result of this miscommunication. The imaging data are relatively new and preliminary, and their meaning is not known definitively at this time. As more data become available, a clearer picture of how brain structure affects bipolar diagnosis will emerge.

Click here to check out the article.



Advocate for mental health and invisible illnesses, also a devout Christian

Author – http://www.finallyawriter.com (this blog contains my old work mostly although occasionally I do add something new here), new work is mainly on this blog http://www.tessacandoit.com